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The nucleophile addition reactions afmethyl benzyl car-

bocations with Lewis bases are fast and are generally perceived

to be thermodynamically favorable proces$&By contrast with
proton-transfer reactions at carbbf, there has been little
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consideration of whether these reactions of unstable carbocations

areintrinsically fast, or whether they are fast simply because they

M~tstandkacon = 0.13 Mt s72, respectively. Figure 1 shows

are energetically favorable. This distinction requires a knowledge the effect of increasing concentrations of acetate ion on the ratio

of the intrinsic barrier to the reaction in the absence of a
thermodynamic driving force. We report here intrinsic rate
constants ofkyeor)o = 1 x 10¥ M~ st and (), = 450 s* for
the nucleophilic addition of methanol to the acetophenone
oxocarbenium ior2H* and deprotonation o2H* by solvent

of the yields ofa-methoxystyren® and acetophenone from the
acid-catalyzed cleavage of acetophenone dimethyl ketedvater

at pH 7.0 (10 mM phosphate buffer) at 25 andl = 1.0 (KCI).24
The data were fit to eq 1 to givieaco/knon = 0.0034 M for
partitioning of2H* between deprotonation by acetate ion to give

water, respectively (Scheme 1). These intrinsic rate constants2 and nucleophilic addition of solvent water to give, ultimately,

correspond to intrinsic barriers dfyeon = 6.5 kcal/mol and\,
= 13.8 kcal/mol for the nucleophile addition and proton-transfer
reactions, respectively.

acetophenon®. This partitioning ratio can be combined with the
value of 5x 10’ s for kyon,” to givekaco = 1.7 x 1P M1st
as the absolute rate constant for deprotonatio?+bf by acetate

Table 1 summarizes the rate and equilibrium constants for theion. The acidity of the oxocarbenium ioBH* can then be

formation and reaction of, 1H", 2, and2H" in water at 25°C
(Scheme 1). The literature valdéof kyeon = 3 x 1P Mt st
and ky = 1600 Mt s71 give Kaqg = 1900 for the addition of
methanol to2H* to give 1. The value of K, —6.2 for
protonated acetophenone dimethyl kefd™ was estimated
starting from X, = —2.52 for protonated dimethyl eth&éihe
equilibrium constant for the addition of methanol2d* to give
1H* can then be calculated af)n = KagdKa = 0.0012 Mt
(Scheme 1). The first-order rate constant for the cleavadélof
to give the oxocarbenium ioBH" can be calculated dgq, =
kuKa = 2.5 x 1 s, This is smaller than the rate constant of
~10'9 s7* for the thermodynamically favorable deprotonation of
1H" by solvent water to regenerate!! so thatl and1H* are
essentially at chemical equilibrium during the acid-catalyzed
cleavage ofl. This is in agreement with the conclusions of earlier
studies thalH" is an intermediate of the stepwise, specific-acid-
catalyzed hydrolysis of ketat8which is the microscopic reverse
of nucleophilic addition of methanol t8H" to form 1.

The rate constants for protonation @fmethoxystyren& by
hydronium ion and acetic acid in water at 26 andl = 1.0
(KCI) were determined by published methédas Ku)ax = 80
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calculated a&qoxo = (Kaco/Kacor)(Ka)acon = 33 M, using pKa)acon

= 4.60 for acetic acid under our experimental conditions. The
relationship Koxo ko/(kn)ax then givesk, = 2600 s?t for
deprotonation o2H" by solvent water. The equilibrium constant
for elimination of methanol froni to give 2 was calculated as
Kak = Koxo/Kagg = 0.018 M (Scheme 13

(13) The reactions o2 were monitored by following the appearance of
acetophenone by UV spectroscopy. The protonatio® isfrate-limiting for
its conversion to acetophenone [Loudon, G. M.; Berke].&m. Chem. Soc.
1974 96, 4508-4517].

(14) The products of the cleavage bfn water were separated by HPLC
and quantified as described in earlier work [Richard, J.Am. Chem. Soc.
1989 111, 1455-1465]. Ratios of product yield2]/[acetophenone] were
calculated using eq 4 2)/[acetophenonet (Ao/Axetond (€ketond€2)} , WhereAy/
AvetonelS the ratio of the peak areas from HPLC analysis aR@.de> = 0.46
is the ratio of the extinction coefficients of the two products at 269 nm. The
observed product ratid?]/[acetophenone] decreases with time due to acid-
catalyzed hydrolysis d? to give acetophenone. Therefore, the initial product
ratio was determined by extrapolation to zero time of a linear plot of the
observed product ratios against time determined during reaction of up to 30%
of 1. During this time, the value of?]/[acetophenone] decreases %80%,
but the difference between the ratio obtained by extrapolation to zero time
and that obtained at the earliest time point wak0%. The values of\,/
Axerone@nd the value okaco/knon (M) determined from the ratio of product
yields were reproducible to better thar10%.

(15) The derivation of eq 1 assumes that there is no catalysis by acetate
ion of the nucleophilic addition of water t@H". An increase in the
concentration of acetate ion from 0 to 0.77 M=t 1.0, KCI) results in a
2-fold increase in the observed product rate constant fatip/ksos for
partitioning of2H* between the addition of solvent water and the diffusion-
limited addition of sulfite dianion, which is nominally consistent with catalysis
of the addition of water t@H* by acetate ion (ref 8). However, this change
in the observed product rate constant ratio is likely a result of a specific acetate
ion salt effect on the relative values kdos andkyon because (a) acetate ion
catalysis of the addition of water @H* (kjon = 5 x 10" s°2, ref 7) should
be less important than catalysis of the addition of water to the more stable
1-(4-dimethylaminophenyl)ethyl carbocatioks (= 40 s in 50:50 (v/v)
trifluoroethanol/water [McClelland, R. A.; Cozens, F. L.; Steenken, S.; Amyes,
T. L.; Richard, J. PJ. Chem. Soc., Perkin Trans.1®93 1717-1722]), for
which no catalysis by acetate ion was obserkfdth) The absence of general
acid catalysis of the cleavage dbfo give2H* and methanol (ref 12) requires
that there be no general base catalysis of the addition of metha@bltin
the reverse direction. This suggests that catalysis of the addition of water,
whose basicity is similar to that of methanol, is negligible.

(16) This is in fair agreement witk,x = 0.06 M obtained by combining
the value ofK, determined for the elimination reaction in methanol and the
free energies of transfer of the reactants and products from methanol to water
[Toullec, J.J. Chem. Soc., Perkin Trans.1®89 167—171]. The value of
Koxo = 33 M reported here also shows a similar agreement with the value of
65 M determined by a different indirect method in this earlier study.

© 1999 American Chemical Society

Published on Web 08/31/1999



8404 J. Am. Chem. Soc., Vol. 121, No. 36, 1999 Communications to the Editor

Table 1. Rate and Equilibrium Constants for the Formation and Reactidh dH", 2 and2H" in Water (Scheme 1)
reaction equilibrium constant rate constants
1 Ludtveony Kax = 0.018 M
+ S Ka=1.6x 10° M°
ot sed Koxo = 33 M k, = 2600 s ¢
(kH)aIk =80M1ist?
o andMEOHVIT] Kaga= 1900 Kueor =3 x 1P M-1s19

ky = 1600 Mtsth
kveon=3 x 1P M~1s19
25x 10Psti

oH* KaaduMeOH] 1H* (Kagdn = 0.0012 Mt

ksolv

aAt 25 °C andl = 1.0 (KCI), unless noted otherwise. A discussion of the uncertainties and standard errors in the rate and equilibrium constants
reported in this table is given in the Supporting Informatib@alculated aKax = Koxd/Kage ¢ Estimated from o = —2.52 for dimethyl ether, as
described in ref 99 Calculated a&oxo = (Kaco/kacor)(Ka)acor, see text? Calculated a&, = Koxo(kn)ak = (Kaco/kacon)(Ka)acor(ki)ai. f Calculated as
Kadda = kveor/ky. 9 Data from ref 7." Data from ref 8. Calculated asKadadn = KaadKa | Calculated aksoy = kqKa.
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Figure 1. The effect of increasing concentrations of acetate ion on the
ratio of the yields ofi-methoxystyrene and acetophenorg[fcetophe-

none), from the acid-catalyzed cleavage of acetophenone dimethyl ketal

1in water at pH 7.0 (10 mM phosphate buffer) at 25 andl = 1.0
(KCI). The solid line shows the least-squares fit of the data to eq 1 of
the text. The slope of this line kaco/kion = 0.0034 M for partitioning

of the oxocarbenium ioBH" between deprotonation by acetate ion and
nucleophilic addition of solvent water.
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Table 1 shows that, despite the 6 kcal/mol larger thermody-
namic driving force for the deprotonation 2H* to give 2 (AG®
= —2.1 kcal/mol) than for the nucleophilic addition of methanol
to give 1H" (AG® = 4.0 kcal/mol), there is a 1200-fold larger
rate constant for the latter reaction. The rate and equilibrium
constants for these reactions 2fi* were substituted into the
Marcus equatioH (eq 2, derived at 298 K) to giVAyeon = 6.5
+ 0.5 kcal/mol as the intrinsic barrier for the hypothetical
thermoneutral nucleophilic addition of methanold*, andA,
= 13.8+ 0.1 kcal/mol as the intrinsic barrier for the hypothetical
thermoneutral deprotonation &H™* by solvent water. These
intrinsic barriers correspond to intrinsic rate constant&@fdn)o
=(1.1+£09) x 1M tstand ), =450+ 60 s (eq 3)*8
The value of kveon)o for addition of methanol t@H" is larger
thank, = 1 x 10" M~ s7* for thermoneutral protonation of the
dicyanomethyl carbanion by secondary amines, a prototyfaistl
proton transfer at carbdhand only~60-fold smaller tharky ~

(17) Marcus, R. AJ. Phys. Cheml1968 72, 891-899.

(18) The quoted errors are standard errors. The calculation of the standard

errors in the values of\veon Ap, (Kveor)o, @and k), is discussed in the
Supporting Information.

(5-7) x 10° Mt st for the diffusion-limited reactions of
carbocationd? We conclude that the thermoneutral nucleophilic
addition of methanol to the oxocarbenium i&H' is an
intrinsically fastreaction. By contrast, the deprotonation2bf*

by solvent water through transition stadeis a much slower
process.
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A qualitative explanation for the existence of a significant
intrinsic barrier for carbocationnucleophile combination reac-
tions such as the addition of methanol 2™, is that the
stabilization of the transition staBdue to the developing €0
bond issmallerthan the opposing increase in energy from the
loss of stabilizing electron donation from the-oxygen and
a-phenyl groups to the benzylic carbdmhe falloff in stabilizing
electron donation to the benzylic carbon of carbocations such as
2H* on proceeding to the transition st&enay be relatively large
because®?° (a) there is a fractional loss of stabilization from
electron donation that is roughly equal to the fraction of@
bond formation aB8; and (b) stabilization of the carbocation from
m-overlap witho-substituents is further reduced by the movement
away from a planar geometry at the pasfy-hybridized benzylic
carbon of3.202 Whatever the explanation for the magnitude of
Awmeon = 6.5 kcal/mol, this experimental intrinsic barrier for the
addition of methanol t@H" will serve as a benchmark against
which to test developing theoretical work to model these intrinsic
barriers.
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